Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress.
نویسندگان
چکیده
The vascular endothelium, by virtue of its position at the interface between blood and the vessel wall, is known to play a critical role in the control of thrombosis and fibrinolysis. Thrombomodulin (TM) is a surface receptor that binds thrombin and is a potent activator of the protein C anticoagulant pathway. Although TM expression is known to be regulated by various cytokines, little is known about its response to ever-present biomechanical stimuli. We have explored the role of fluid shear stress, imparted on the luminal surface of the endothelial cell as a result of blood flow, on the expression of TM mRNA and protein in both bovine aortic endothelial (BAE) and bovine smooth muscle (BSM) cells in an in vitro system. We report in the present study that TM expression is regulated by flow. Subjecting BAE cells to fluid shear stress in the physiological range of magnitude of 15 (moderate shear stress) and 36 (elevated shear stress) dynes/cm2 resulted in a mild transient increase followed by a significant decrease in TM mRNA to 37% and 16% of its resting level, respectively, by 9 hours after the onset of flow. In contrast, shear stress at the low magnitude of 4 dynes/cm2 did not affect TM mRNA levels. The sensitivity of TM mRNA expression by flow was found to be specific to endothelium, since it was not observed in BSM cells exposed to steady laminar shear stress of 15 dynes/cm2. Furthermore, unlike BAE cells, BSM cells did not exhibit altered cell shape nor align in the direction of flow after 24 hours of shear stress at 15 dynes/cm2.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Thrombosis of vein grafts: wall tension restrains thrombomodulin expression.
Thrombosis is a major complication leading to early vein graft failure in patients undergoing coronary artery bypass surgery.1 Like thrombosis at other sites, thrombosis of vein grafts results from a failure of hemostatic balance, which is normally maintained by a complex series of coagulation reactions that involve both systemic and local factors.2 The endothelium contributes to local hemostat...
متن کاملCombined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics
AIMS/INTRODUCTION Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to b...
متن کاملExpression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress.
AIMS CYP1A1 and CYP1B1, members of the cytochrome P450 protein family, are regulated by fluid shear stress. This study describes the effects of duration, magnitude and pattern of shear stress on CYP1A1 and CYP1B1 expressions in human endothelial cells, towards the goal of understanding the role(s) of these genes in pro-atherogenic or anti-atherogenic endothelial cell functions. METHODS AND RE...
متن کاملRegulation of Thrombomodulin Expression and Release in Human Aortic Endothelial Cells by Cyclic Strain
BACKGROUND AND OBJECTIVES Thrombomodulin (TM), an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (a...
متن کاملShear stress down-regulates gene transcription and production of adrenomedullin in human aortic endothelial cells.
Vascular endothelial cells are potent modulators of vascular tone in response to shear stress. Levels of vasoactive peptides such as adrenomedullin (AM), endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO) are affected by fluid shear stress. AM, a potent vasodilator and suppressor of smooth muscle cell proliferation, contains the shear stress responsive element (SSRE) "...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 74 5 شماره
صفحات -
تاریخ انتشار 1994